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QUENCHING OF ADAPTIVE ONTROL SYSTEM RESPONSE TO TEST SIGNAL

by

Rufus Oldenburger*

and

Luther Schrock**

Purdue University

In adaptive controla test signal may be used to identify the parameters of

the system to be controlled. -A t*;t siwA "+Lrb&-th & . It is I"5fem

desirable to elimiate the effects of this signal as soon as the identification

has been complete After identification a quenching signal may be introduced to

eliminate the system esponse to the test signal. The systema treated here are

described by linear di e equations with slowly varying coefficients. The

nature of the quenching depends on whether or not it is bounded or unbounded.

The unbounded quenching signal is a linear combination of a properly weighted

impulse and derivatives of an impulse. The weights are determined by the initial

conditions on the system at the instant of quenching and the system parameters.

Unbounded quenching is considered to be optimum if the response to the test signal

is eliminated with minimum integral squared error. The bounded quenching signal

is obtained by scheduling the lengths of time its value is either at the upper or

lower bound. The quenching signal is determined by the test signal and the system

to be controlled. Therefore as soon as the system is identified quenching can be

accomplished by scheduling regardless of the other disturbances to which the system

is subject. The method applies to the ouenching of system response whether or not

adaptive control is involved.

Director, Automatic Control Center; Professor of Mechanical Engineering
* Research Assistant, School of Mechanical Engineering

- I 7# /
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INTRODUCTION

State space for a system described by a differential equation of nth order

is defined as a system of cartesian coordinates where the ordinntes are the

controlled variable and its first n-i derivatives. The normal state of a system

is the state due to the normal input. The normal input is the input to the system

in the absence of the test or quenching signal.

Adaptive control is indicated wiere the parameters of the system to be

controlled are time varying. It is important to know the value of the parameters

to match the controller to the system. The determination of the parameters of

the system is commonly referred to as the "identification problem". One method

of identification is to use the normal input and the corresponding system response.

The other is to introduce a test signal. The test signal disturbs the system.

Th resnonse to the normal input is often difficult to distinguish from the noise

presen In such cases a test signal for which the system response dominates the

noise is p ferred to the normal input.

Mishkin, raun, Corbin, Merriam and others present technioues for solving the

identification lem. .

aapiv con l ,I. The switches are closed

during normal operation and open for the period of identification. The switches

may be omitted, but then the computation becomes much more difficult. A test

signal is used for identification to eliminate the effects of the test signal.

The theory is restricted to controlled systems described by linear differential

equations with constant coefficients. The form of the equation is known at the

start but not the values of the coefficients which are parameters. It is assumed

that the parameters of the system vary slowly enough so that they may be considered

constant during identification.I diately after identification the
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parameter values are available to calculate the ouenching signal. The response

to the test signal may then be quenched by scheduling determined only by the

test signal and system characteristics. This signal is independent of the other

disturbances to which the system is subject.

The nature of the quenching signal depends on whether or not it is bounded.

It will be shown that the unbounded quenching signal is a linear combination of a

properly weighted impulse and derivatives of an impulse. The order of the highest

derivative is one less than the order of the system. The weights are determined

by the state of the system at the instant of quenching and the system parameters.

Unbounded quenching is considered to be optimum if the response to the test signal

is eliminated with minimum integral squared error. The bounded quenching signal

is obtained from a "bang-bang" controller. The signal is either positive or

negative and its absolute value is less than or equal to a constant. Oldenburger,

LaSalle, Bellman, Rozonoer and others present methods of obtaining the control

functions necessary to determine when the signal is positive or negative.2, 3, 4, 5

The control time is defined as that time interval during which the bounded

quenching signal is either positive or negative. The control functions for a

bang-bang controller are used to obtain the control times. These time intervals

are expressed as functions of the test signal, the magnitude of the ouenching

signal and the system to be controlled. The quenching signal is introduced by

scheduling the control times. For some systems the control times are independent

of the system parameters. A computer may be readily programmed to compute the

control times if they are not independent of the system parameters.

Not all systems are treated; however the method is satisfactory for a large

class of simple systems. For the general second order and higher order systems

the expressions for the control times become complicated and impractical without

approximations.
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GWNERAL THEORY FOR CASE OF UNBCUNDED QUENCHING SIGNAL

The general system is shown in Figure 2. It is assumed that this system is

linear and that g(t) is its impulse response. The Laplace transform G(s) of g(t)

represents the transfer function of the system.

The signal r(t) may be the normal input or an equivalent input due to

disturbances entering the system at other points. The extra signal e(t) is

composed of two components ml(t) and mq(t). Here ml(t) is the test signal for

identification and mq(t) is the quenching signal introduced to drive the system

to the normal state. In general r(t) is a function of time, either deterministic

or random.

Since the system is assumed linear, superposition holds and the output c(t)

Is the sum of the responses to the three inputs r(t), ml(t) and mq(t). The three

outputs are liven by the convolution integrals

01(t) - g (t-cr)ml(j )d "

cq(t) - g(t- ')mq(7* )d "(I

where cr(t), cl(t) and cq(t) are the responses to r(t), ml(t) and mq(t) respec-

tively. Thus

c(t) - c(t) + cq(t) + cr(t) . (2)

We define the system error eq by

eq a Ca - cd  (3)

where ca is the actual output of the system and cd is the desired output.
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When ml(t) is introduced the response to this signal is superimposed on the

response to r(t). If the identification requires time T and ml(t) is introduced

at t - 0, it is desirable to return the system immediately to the normal state

at t * T. Ideally we would like t) return the system with zero error. Figure 3

shows the desired response.

For O'tST the system response is the sum of cr and c 1 . For t:PT we then

want the output or . Therefore we define the desired output cd by

cd - cr tPT . (4)

We have stated that ideally the system response should be returned to the

normal state with zero error; this corresponds to moving from one point in state

space to another in zero time. Due to limitations on the system and on the power

available, a finite time will be required to return the system to the normal state.

The actual response of the system is shown in Figure 4.

Since the system is not returned to the normal state instantaneously at

t a T the error eq is given by

eq a c a -C d * (cl + Cq Cr) - cr - c 1 + Cq t"T . (5)

Since cq(t) a 0 for t'4T it is convenient to introduce a new variable t'

Were

t' - t -T

and replace Cq(t) by a new function c2 (t') where

c2 (t') - co(t)
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Equation (5) may be written in terms of the new variable t' as

e(t') - cl(tO + T) + c2 (t') t'.O (6)

where

e(t') - eq(t)

We introduce m2 (t') where

m2(t') - mq(t)

The integral squarad error I is given by

I - fe2(t ' ) dt' . (7)
0

By Equations (6) and (7) we obtain

I " [c1(t' + T) + 2cl(t' + T)c 2 (t') • (t')] d' .

The error and hence the integral squared error is zero if

c2(t') - - cl(t' + T) t' O . (9)

Now c2 (t') is given by the convolution integral

c2 (t') f g(t' -T)m 2 (T) dr (10)

By Equations (9) and (10)

g(t' -T)m2(T) d - - cl(t' T) . (1)

Equation (ii) may be solved for m2 (t') by taking the Laplace transform of

both sides to obtain

G(s)M2 (s) " - [cl(tI T)] (12)
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where M2(3) is the Laplace transform of m2 (t') with respect to the time variable

t', andx[cl(t' * T)] is the Laplace transform of the output cl(t' + T) with

respect to t'.

Since ml(t) - 0 for tarT the response of the system does not depend on ml(t)

for taT, but only on the initial conditions at t = T; that is, t' a 0.

In general the linear system under study is given by the differential equation

dncl dn-lc + dc,
;n an-1 . . . a, dt aocl"

(13)

dtq bq-.1. " " " b 1 -d * bl

dtqdtq-1 dt o

for real coefficient. a., al, . . . n 1 and bo, . . . b . We assume that qV n-l.

For each i we have

dti  d(t' ) '

The initial condition. at t - T are

c1 (T) -c o

c (T) co

1 0

where co, C" Cb-
* 

) are the values of cl, cl, c1  at t' 0.

Let Cl(s) denote 1[cl(t' + T)] for the time variable t'. By Eouation (13)

nc, - 1 - n-2.'.. - 1 + [n-lC-n-2 n-3c I -2]

+ ... +alisCi -coI+ aoC1 - 0
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vwhence
c°[sn'lea'. 1 n-2....aiJ +csn-2 sn' 1 n'3 *" a21 ." cn'l ,

an + an- 1  ... ale + a

We note that G(s) has the same denominator as Cl(s) but that the numerator

of G(s) is
bq q * bq q-1 +b1 a  

. . . • b0

By Equation (12)

{CO [n-1.an-len-2*...*.a] .c6[gn,2*an~ln-3*ee*........ +0n-1}
)(2 (s) Is (16b qeq + bq-lsq-1*. bo

Now c2 (t') is the solution of the differential equation wita initial

conditions
C2(0) - - cl(T)

c;(O) - - cj(T)

. -c~)

Since c2 - 0 for t'. 0 the problem is to create the above initial values of

c2 and its derivatives.

If the inverse Laplace transform of both sides of Equation (16) is taken,

then m2 (t') will be that signal vhich produces the negative of the response al(t)

for tx"T. Figure 5 shows the response c2 (t').

If cj(T) 0 the response c 2 (t') requires an instantaneous change in velocity

and hence an infinite acceleration of the system output. For a physical system

there is always mass or inertia associated with the output; therefore infinite

acceleration reouires infinite force.
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SECCND AND IHIRD CQDER CASES FCR UNBOUNDED QUENCHING SIGNAL

We consider a second order system with the transfer function

G(s) * s2 + al (17)

The differential equation describing the system is

d2cl dc1
7-('j) 2  + dt' aocl 0

%tere the input is zero since we consider only the response for t ' 0 and

ml(t) - 0 for t'"O.

Taking the Laplace transform of both sides of Equation (18) yields

(82 + ale + ao)Cl(s) - (sco + C; + alco ) * 0 (19)

where co and c, are the initial conditions at t' w 0.

Solving Equation (19) for Cl(s) we obtain

C(s) = coo + alco + C; (20)
2 + a1 8 + a0

Substituting CI(s) from Eouation (20) and G(s) from Equation (17) into

Equation (12) and solving for M2(5) we get

[2(1cs * (alc0 * co ) . (21)

The unit impulse 6(t') may be defined by

6(t') - lm u(t') - u(t' - a) (22)
a-0 a
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where u(t') and u(t' - a) are unit step functions at t' - 0 and t' - a

respectively. The derivative of a unit impulse is taken as

d 6 t') . lir u(t') - 2u(t' - a) + u(t' - 2a) (23)

dt' a-*O a 2

in the sense that the limit of the Laplace transform of the fraction in

Equation (23) as a-0Q is a. The plot of this fraction versus t' is a double

pulse, three of which are pictured in Figure 7c.

Similarly the second derivative is taken as

d2 $(t') . li ut') - 3u(t' - a) + 3u(t' - 2a) - u(t' - 3a) (24)

dt' a-0O a3

where the limit of the Laplace transform of the fraction in Eeuation (24) is s2 .

The plot of this fraction is a triple pulse.

We shall illustrate the use of the fraction on the right in relation (22).

Consider a simple second order system described by the differential equation

c" - k, m2 t') (25)

where the primes denote differentiation with respect to t'.

Let C(s) be the Laplace transform of c(t') with respect to the time variable

t' and M2 (s) be the Laplace transform of m2 (t'). Taking the Laplace transform of

both sides of Equation (25) and solving for C(s) we obtain

C(s) - kIM 2 (s) + sco + co (26)

where c - co and c' - co at t' -.
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The approximation to a unit impulse and its derivative is given by

Equations (22) and (23) when a 0 . We let

- wiu(t') -u(tI a)] _ W u(tI) - 2u(t' - a) 4 u(t' - 2a)] (27)

where W1 is the weight of the approximate impulse and W2 is the weight of the

approximate derivative.

Taking the Laplace transform of both sides of Equation (27) we get

12(6) (Wl W2 )l W1 +2W2 e-as _ W2 0 !. (28)

Substituting 112(s) from Equation (28) into Equation (26), taking the inverse

Laplace transform and collecting f ma we obtain

c(t') - kV2a - kiW2 - kiWt' + co + cot'
2

(29)

c'(t') a c' - kiw

We now let a-40 in Equations (29). The result is

c *' co + o~t' -kl(W 2 + Wt')

(30)

c'(to) - co' - k1 W1

If c(t') - c'(t') *0 for t so0 we must have

W Co

(31)

W Co

Letting a-*O in Eq~uations (29) gives the same result as letting a-PO in

Equations (2?) and (2-1).
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At t' Owe have c - c o and c' - c'. At t' a 0 we have c = c' - 0.

Therefore co and co are reduced to zero instantaneously at t' - 0 for the values

of W, and W2 given by Equations (31).

We now take the inverse Laplace transform of both sides of Equation (21)

to obtain

-249) -. [ca 4(s) +(alco * c(,) 5('](32)klI

where 6(t1) is the unit impulse and ots) is the derivative of the unit impulse,

referred to as the "doubletl. 6 , 7. The initial condition co is the weight

associated with the doublet and (alco + co) is that of the impulse.

If the system is third order with the transfer function

0(s) s3 + a2s2 + als ' ao  (3)

K2(8) is given by

1(2 (8) - - -L (co0s2 # (a; # a2 o) + (c: 4 a2c; + 410d)] .(34)

The inverse Laplace transform of both sides of Equation (34) now yields

S - S..
12 tW) 0 & .. C(@ 2) . (co Pa~0 )() . (c" + a2co, * alco) Ct')1 (35)

where (2) is the second derivative of the unit impulse and is referred to as

the "triplet". The weights of the triplet, doublet and impulse are co, (c o a2co)

and (c"a 2co+aleo) respectively.

It Is noted that the weights of the impulse and its derivatives are deter-

mined from the initial conditions at t' a 0 and the system parameters. The order

of the highest derivative is one less than the order of the system.
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The signal m2 (t') is not physically realizable due to the appearance of the

impulse and its derivatives whence the error e(t') will not be zero.

Truxal shows that the optimum manner for an ideal system to reach the origin

from some point in the phase plane is as shown in Figure 6. 8. The path begins

at some initial condition co, co and goes to infinity then returns along the

c' ordinate from infinity to the origin. Since the area under the reciprocal plot

of 1/c' versus c is zero, and time in the phase plane is given by

t a J dc/c'

no time is required to reduce c to zero.

The unit impulse may be approximated by considering a pulse of finite height

and short tim duration such that the area under the pulse is unity.

Figure 7 a,b and c shows the family of paths in the phase plane, time domain

and the respective quenching signals for a second order system. As the pulses

become higher and of shorter time duration, the time to reach the origin from the

initial condition at t - T decreases.

To introduce the properly weighted pulses the computer must determine cot

co . . at the instant t - T. In practice we cannot compute the third or higher

order derivatives because of noise present in the system. We can however calculate

the initial conditions from the known test signal and the system equation. Thus

the control time may be computed in terms of the pulse height and the initial

conditions at t - T.
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SYSTtM WITH BOUNDED QUM4CHING SIGNIAL

The differentlal equation describing the linear system under study will be

taken to be

dnc anl . . . + al + aoc a (36)d(t,)n  n- d(t') n-I  """dt' ac= kl 2 (6

where Im2l Z k2. Then the quenching signal m2 is bounded. Oldenburger has shown

that under rather general conditions the best return to "equilibrium" is attained

by operating "bang-bang".2. For the problem at hand equilibrium is the normal

state of the system. In every reasonable sense the trajectory is optimum, i.e.

least time to equilibrium, minimum overswlng or underswing and minimum area

between the trajectory and the t' axis, etc.

We shall now make use of the control functions for a bang-bang controller to

obtain the ontrol times. The quenching signal, scheduled according to the control

times, will bring the system to equilibrium.

Example I: Simnle Second Order System

We consider the system described by the differential equation

C" a klm2  (37)

where the primes denote differentiation with respect to t'. The problem is to

determine the control times in terms of the initial conditions at t' - 0.

The optimum control function E for the system of -ouation (37) Is given

by .2

C + c'l c'
c 2klk2 •(38)
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The schedule for optimum control is

M 2 a - (sgn r) k2  (39)

where agn X denotes the sign of r . Suppose that X 9 0 at t' 0 0. The transient

from t' a0 to the instant t I where IC a 0 is the first phase of the solution.

This is followed by a second phase terminating in equilibrium. The duration of

this phase will be denoted by t 2 .

By Equation (37)

c " co + kpm2 t'

* + c t' * k m2  (t') 2  (40)

where c a co and c' a C; at t' - 0.

We substitute c' and c from EQuations (40) into 1 : 0 to obtain

* CoI + t t (sgn c') (c o  klm2 tj)
2  0 (41)2klk

2

where sgn c' denoted the sign of c' when r- o.
f

Solving for t, from Equation (41) we obtain

- (sgn )cA ,)- (sgnl:)klk2 o (42)
kl k2

Let c, and cj be the values of c and c' at t' - tj. By Equations (40) and

(42) we have

c - (sgn r) j(co)2 + (sgn t)klk2co  k43)

The initial conditions for the last phase are cI and cj. Letting t" a t'-t

for the last phase we have

' = c" - klm2t" (/44)
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When t" - t; the system is at equilibrium and c' = 0. Thus

CI

- k lm2  - ()

Substitution of cl from Equation (43) into Equation (45) yields

,V j/(co,) 2 + (3gn 1- )klk2c o,t2 " (46)

kl k2

Equations (42) and (46) give t, and t 2 respectively in terms of the initial

conditions co and co. It in unlikely that the case where E - O at t - T will

occur. This case is taken care of by having tj - 0. The times tj and t2 approach

sero as k2 becomes arbitrarily large.

Equation (3-7) is the differential equation of the system after identification.

We let ml(t) be the test signal, to be introduced at t - 0. The differential

equation of the system for t'.-O is

c" - ki Mi (47)

where the prime. denote differentiation with respect to t.

We wish to express tj and t; in terms of the known test signal and the

identification period T. We let the test signal be an impulse of weight W. Here

ml is not bounded but it is understood that the quenching signal is. The solution

to Equation (47) is

c(t) a klWt

c'(t) - klW

At the end of the time interval T the identification is assumed to be

complete and Equation (37) applies. Thus the initial conditions for Equation

(37) are
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c(T) - co  M klWT

(49)
c'(T) a co  a kjW•

Here co and c' are both positive. Hence I:a 0. We substitute co and c o0I

into Equations (42) and (46) to obtain tI and t2 respectively. The control times

are giv, by
Vw aW2 + k2WTti-

q k2

(50)

, /+ k2WT
t 2  -

It is of interest to note that

t; - tjW/k2

Physically one cannot obtain an impulse but must approximate the impulse

by a pulse of finite height and short time duration. Figure 8 shows an approxi-

mation to an impulse where H is the height and a is the duration. It is assumed

that aa.T.

If ml is the pulse shown in Figure 8, the initial conditions for Equation

(37) are obtained by solving Equation (47). These initial conditions are

c o - klH(2aT - a2 )

(51)
co  - klHa

Substitution of the initial conditions from Equations (51) into Equations

(42) and (46) yields
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tHa + -d'Ji 2a2 + jk 2 H(2aT - a2)'
k2

-t (52)
, A.H2a2 * jk2H(2aT - a2)(

2 k2

We define

H - W/a

Letting a-6O while W remains constant Equations (52) reduce to Eouations (50).

If ml is a step input of heigt H and duration T, the control times become

t M T + V*12T2 + 4k2HT
2

k2 (53)

, I ak 2 HT2
t2 -

2k2

We now have expressions for the control times in terms of the test signal

ml, T and k2. We note that the control times for the simple second order system

are independent of the system and are fixed by the test signal. Thus it is

relatively easy to schedule the quenching signal when the test signal is known.

Example 2: Third Order System

We consider the system described by the differential equation

Tc"- kjm2  (54)

kfiere Im21 A k2 , T" is the time constant. of the system and the primes denote

differentiation with respect to t'.
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For the system of Eauation (54) Oldenburger introduces the two control

functions r 1 and r 2 where

Z1 - 2k~ 2  (sgnV#)klkg2ln CIO

2  -L (56)2 " / *2klk 2

where - + , C 1, (57 )

For disturbances normally encountered the log term of r l is small compared

to the rest of the terms, and can therefore be dropped. 2. We therefore take

r -r 2.

Optimum control is obtained by using Equation (39) and normally involves

three phases, for ead of which m2 is k2 or -k2.

We begin with a set of initial conditions co, c4 and cO and lot the system

travel over the first phase to the first switch point where r - 0. During this

phase Equation (54) becomes

Tc"I c" - (sgn r )kik2 . (58)

The solution to Equation (58) is

c . r2(cc * (sgnr)klk2 ](e tI -1) + C - (Co' *TC")t'

+ (sgnr.)*klk2t' - (sgnE)Jklk2(t')
2

C- (Co *TCo) + (sgn-)Tklk2 -T[co * (-gt)k0k 2].'t '

- (sgn r)klk2t'

[Co * (sgn E)klk2 ]e- t ' - (,gnL)klk2 (59)
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where c - c co and c" - co at t' - 0. We let c - C1 , c' and c

at t' M tj; these values of c, c' and c" are the initial conditions for the next

phase. At t' a t1 we form the function where

W c1  "c . (60)

Substitution of cl, cj and c" from Equations (59) into Equation (60) and the

equation for UO yields

, WO (tl * ) - (sgn r)Jklk2(t)2 * (co - o

P1 W1 (sgn E )klk2 tl (61)

where 'P and W. are the values of IP and .at t' - 0.

At t * tl, 'p and Wsatisfy 1- 0. Hence

Z- 'p'(tj +T)- (sgnr) iklk2 (tj) (0-c
[- (ognr)kk2t0 (62)

2klk2

Solving for tj from Equation (62) we get

(sgnr)' *' j(ip')2 + (egn )klk21(tl' " -l (63))
klk2

For the second phase we have

T c"' * c" * (sgn r)klk2  . (64)

The initial conditions are Cl, c" and c" given by Equations (59) at t' - tj.

Lotting t" - t'-tj the solution of Equation (64) is
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c * r2 - (sgnr)klk2] (e-
4 t" -1) + cI + (cI + cl)t"

- (sgnr)Tklk2t" * (sgnX)Aklk2(t") 2

C- (ci +-r cj'f (sgn E)T klk2 -7 cl - (sgnr)klk2 ] e-+t"

+ (sgn E)klk2t" (65)

C 11 a - (sgnE)klk2  e- " + (sgnr)klk2

C' c" C at t" - t2 Ltl

We let c -c2 c' - c2, a t. Let and a be the values of

and V'/at t" - t2. Substituting c2, c; and c2 from Equations (65) into

and U/ , and substituting the result into r 0, we obtain

)2 + (cl 2c")

# '(t27 ) + (sgnE)Jklk2 (4) 2 + (cI - C6

+ gnPI) [W + (sgn r)kk 2 t2,J2 2
I 2klk2

Solving for t2 from Equation (66) we obtain

-(sgnr) sgnr)kk 2  (67)

-t2  klk2

We may determine and in terms of Co, I co and t1 by substituting

cl, C, and c" from Equations (59) into Equation (60) and the equation for

For the last phase let t"', t' - (tj+t2). For this phase we have Eouation

(58) valid where the initial conditions are now c2, c2 and c", obtained from

Equations (65) at t" a t. The form of the solution for this phase is given by

Equations (59). At t"' - t' we have c3 - c3 - c5 - 0. We may determine t by

setting any of the three quantities equal to zero. It is sufficient to write

c c * (sgnr)kok2M eit1 - (sgnl:)klk2 " 0 (68)



-22-

whence o

t 3  "Trln [1 - (sgn') 22 (69)

We may determine c" in terms of CO, cO, Co, tI and 2 by substituting cl from the

last of Equations (59) into the last of Equations (65).

Equation (54) is the differential equation of the system after identification.

We let ml(t) be the test signal, to be introduced at t f 0. The differential

equation of the system for t,-O is

Tc"I + c" M k1ml (70)

where the primes denote differentiation with respect to t.

Let the test signal be an impulse of weight W. The quenching signal m2 is

still assumed bounded. The solution to Equation (70) is

c(t) - klW(Te-it + t -T)

c'(t) - klW(1 - e-+t) (71)

c"(t) - Tl -  t

At the end of the time interval T the identification is assumed to be

complete and Equation (54) applies. The initial conditions for Eouation (54)

are

ITc(T) - co  " klW(Te-T T-')

CI(T) - c' - klW(l - e-+) (72)

. kl
c"(T) - c" - !LW -4T
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From Equations (72),Wo and Wco we see that E m0 at t' a 0. Substitution

of co, c I and c0 from Euations (72) into Eauation (63) yields

t " k2 (73)

k2

We now substitute co, co and c from Equations (72) into Equations (59) to

obtain ci, cj and c" and substitute the result into Equation (60) to obtain

and q/'. Substituting the resulting expressions for W1 and i into

Equation (67) we get

; a - [(ktlW)W (74)
22k2

Substituting c" from the last of Equations (59) 4nto the last of Equations

(65) and substituting the result into Equation (69) we obtain

t 3  r In T {2 + _-1_2 [(W e-T + k2 )e t - 2k2] e-jt3 } ()

If the impulse is approximated by a pulse of height H and duration a, the

control times become

Ha V H2a 2  k2Ha(T - a)
k2

t; 2 -H)(Ha-k 2 tl)2 * k2 (k2(tl) 2 - Ha(t,'Ta)) (76)
kc2  kc2 '2, {[(He- ] '}

t3 - l ln{2 + -L -1)#k 2  e- ti -2k2] - t 2

If the test signal is a step of height H and duration T, the control times

are
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HT + V F12T 2 j k2HT21
tj - k2

(kt;T _ 1 4 (HT-k t )2 +k (4k 2 (t3.)2 4iT(t,'+ ,o) (77')
k2 k2  2 2

t Tln(2 1 H(l-e-4T)+k e -' _2k2 -t

t3 - 2 L 1 e

We note that tj and t2 are independent of the system constants k, and T

for all three test signals. The first two control times are then constant and

only t3 must be computed after T is identified. The value of t1 and t; can be

stored in the computer memory and used to obtain t immediately after identifi-

cation.

Higher order systems were not considered, as the expressions for the control

times become excessively complicated. Also, if the output i-s measurud to

determine the initial conditions, derivatives of order higher than the second

are difficult to obtain because of noise present in the system.

For many systems one cannot solve for the control times e;xr'licitly. This

is true for a general second order system.

Experimental Results

The results obtained for Example 1 were verified on the analog computer.

Figure 9 shows the actual and theoretical system response to the bounded quenching

signal. The initial conditions on the system at t' - 0 correspond to the

conditions after identification. The control times were calculated from

Equations (42) and (46). It is seen that the actual response is very close to
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the theoretical. A relay was used to obtain the quenching signal. The relay

had a small amount of deadband, which accounts fer some of the deviation from

the theoretical response.

We have thus found that it is possible to determine the control times and

obtain proper switching with sufficient accuracy to obtain a trajectory which

is nearly the same as the theoretical trajectory.
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